SHIPLEY

UVN[®]30 Negative DUV Photoresist

UVN30 is a negative-tone photoresist for DUV, X-ray, and e-beam applications. This resist is targeted for fast throughput device production rules down to 150 nm. Nested lines/spaces, isolated lines, posts, and contacts can be resolved with wide process windows. Minimal PEB sensitivity, insensitivity to airborne contaminants, and superior metal etch resistance are only some of the properties UVN30 offers. Recommended substrates include polysilicon, 300Å capped SiON, and Shipley's organic anti-reflection coating. UVN30 has been optimized for 0.26N developers.

Features & Lithographic Performance:

- Sizing energy
 - 10.0–30.0 mJ/cm² for lines/spaces
- Depth of Focus
 - 1.00 µm DoF for 350 nm 1:2 posts
 - 0.80 µm DoF for 300 nm 1:2 posts
 - 0.75 µm DoF for 250 nm 1:2 posts
 - 0.80 µm DoF for 150 nm 1:2 lines/spaces
 - 0.60 µm DoF for 150 nm isolated lines
- 1 hour post-exposure bake stability
- >1 hour post-exposure bake stability
- <2nm/°C post-exposure bake sensitivity
- 9 months shelf life
- 175°C thermal stability

Figure 1. Lithographic Performance (0.60 NA, 0.60σ)

150 nm Isolated Lines

150 nm 1:2 Lines/Spaces

250 nm 1:2 Posts

See *Figure 1* for lithographic performance and *Table 1* for recommended process conditions.

Table 1.Recommended Process Conditions			
Reflective Su Thickness Softbake	<u>ubstrates</u> 5,000–8,000Å 90°C/60 sec. proximity hotplate		
Developer	MEGAPOSIT [®] MF [®] CD-26 @ 21°C, 30 sec. single puddle		
Non-reflective Substrates			
Thickness	5,000Å–8,000Å		
Softbake	110°C/60 sec. proximity hotplate		
PEB	105°C/60 sec. proximity hotplate		
Developer	MEGAPOSIT MF CD-26 @		
	21°C, 30 sec. single puddle		

Substrate

UVN30 photoresist is compatible with a wide range of substrates, including silicon, and organic and inorganic anti-reflective materials. A hexamethyldisilazane (HMDS) based MICROPOSIT primer is recommended to promote adhesion with substrates that require such treatment. Vacuum vapor priming at 120°C for 30 seconds with concentrated HMDS is recommended.

Coat

Figure 2 shows the relation between spin speed and resist thickness for 6-inch substrates. Nominal film thickness may vary slightly due to process, equipment and ambient conditions.

Figure 2. Spin Speed Curve

Softbake

The recommended softbake processes for reflective and non-reflective substrates are listed in *Table 2*.

Softbake	Table 2. Process Conditions
<u>Reflective subs</u>	<u>trates</u>
Temperature	90°C proximity hotplate
Time	60 sec.
<u>Non-reflective s</u>	ubstrates
Temperature	110°C proximity hotplate
Time	60 sec

Film Thickness Measurement

Figure 3 shows the refractive index of UVN30 as a function of wavelength. Cauchy coefficients are listed in *Table 3*.

Tak Cauchy C	ole 3. Coefficients	
n ₁	1.5532	
n ₂	1.01e6	
n ₃	-2.54e12	

Figure 4 displays the E_g interference curves for AR3.

Figure 4. Interference Curve - Bulk Eq

Expose

Figure 5 displays the absorbance curve for the unexposed resist film. *Table 4* lists the parameters needed for resist modeling.

Figure 5. Absorbance Curves

Tab Prolith Pa	ble 4. arameters*
Dill A Value	-0.0199/µm
Dill B Value	0.4386/µm
Dill C Value	0.0150 cm²/mJ
RI @ 633 nm	1.57
RI @ 248 nm	1.77

*Chemically-amplified resists require additional modeling parameters currently being determined. Please see your TSR for an updated copy of modeling parameters.

Post-exposure Bake

The recommended PEB conditions for reflective and non-reflective surfaces are listed in *Table 5. Figure 6* shows the PEB sensitivity of UVN30 on AR3[™].

Table 5. Post-exposure Bake Process Conditions

Reflective substra Temperature	tes 95°C proximity hotplate
Time	60 sec.
Non-reflective sub	ostrate
Temperature	105°C proximity hotplate
Time	60 sec.

Figure 6. PEB Sensitivity UVN30 on AR3

Post-exposure Delay Stability

As shown in *Figure 7*, the delay stability for UVN30 is greater than 1 hour in a non-filtered environment.

Figure 7. Post-exposure Delay Stability

180 nm

173 nm

Develop

UVN30 is optimized for 0.26N developers. MEGAPOSIT MF CD-26 is the recommended developer. A 30 second single puddle with no pre-wet is recommended for most applications, including isolated lines, semi-dense lines/spaces and posts. *Figure 8* shows the dissolution rate as function of exposure dose for both reflective and non-reflective applications.

Hardbake

Figure 9 shows the thermal flow characteristics of UVN30.

Photoresist Removal

UVN30 can be removed with MICROPOSIT[®] REMOVER 1165. A two-bath process is recommended with at each bath at a temperature of 80°C. The first bath removes the bulk of the photoresist and the second removes residual traces of photoresist. Please consult specific remover data sheets for additional process information.

Figure 9. Thermal Flow Characteristics

180°C/3 min.

Handling Precautions

UVN30 is a combustible liquid containing propylene glycol monomethyl ether acetate. Handle with care.* Contact with eyes and mucous membranes may cause irritation. In case of eye or skin contact, flush affected areas with plenty of water for at least 15 minutes. If irritation persists, contact your physician immediately. Avoid breathing vapor or mists. Use with adequate ventilation. Wash thoroughly after handling and always wear chemical goggles, gloves, and suitable protective clothing.

Consult Product Material Safety Data Sheet before using.

Waste Treatment

UVN30 may be included with other wastes containing similar organic solvents to be discarded for destruction or reclaim in accordance with local, state and federal regulations.

It is your responsibility to ensure the disposal of and residues therefrom is made in compliance with all applicable environmental regulations.

Storage

Store UVN30 in upright, sealed original containers in a dry area at 30°–50°F away from heat and sunlight. Keep away from oxidizers, acids, and bases. Keep container sealed when not in use.

*Skin contact may cause allergic sensitization.

For Industrial Use Only. The information is based on our experience and is, to the best of our knowledge, true and accurate. However, since the conditions for use and handling of the products are beyond our control, we make no guarantee or warranty, expressed or implied, regarding the information, the use, handling, storage, or possession of the products, or the application of any process described herein or the results sought to be obtained. Nothing herein shall be construed as a recommendation to use any product in violation of patent rights.

Copyright 1999; Printed in U.S.A.; MEGAPOSIT, MICROPOSIT, MF, Shipley, UVN and the stylized S are registered trademarks and AR3 is a trademark, all owned by Shipley Company, Marlborough, MA.