

For Microlithography Applications

DESCRIPTION

MICROPOSIT S1800 Series Photoresists are positive photoresist systems engineered to satisfy the microelectronics industry's requirements for advanced IC device fabrication. The system has been engineered using a toxicologically-safer alternative casting solvent to the ethylene glycol derived ether acetates. The dyed photoresist versions are recommended to minimize notching and maintain linewidth control when processing on highly reflective substrates.

Substrate	Silicon	
Photoresist	MICROPOSIT S1813 Photoresist	
Coat	12,300Å	
Softbake	115°C/60 sec. Hotplate	
Exposure	Nikon 1505 G6E, g-Line (0.54 NA), 150 mJ/cm	
Develop 15 +50 sec. Double Spray Puddle (DSP) @		

Table I. Process Conditions (Refer to Figure I)

ADVANTAGES

Product Assurance

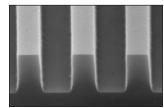
- Lot-to-lot consistency through state-of-the-art physical, chemical and functional testing
- Filtered to 0.2 µm absolute

Coating Properties

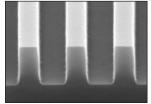
- Cellosolve[™] acetate and xylene-free
- Striation-free coatings
- Excellent adhesion
- Excellent coating uniformity
- A variety of standard viscosities are available for single-layer processing

Exposure Properties

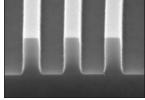
- Optimized for g-line exposure
- Effective for broad-band exposure
- Reflective notch and linewidth control using dyed versions


Develop Properties

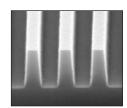
- Optimized for use with the MICROPOSIT MF[™]-319 metal-ion-free developer family
- Compatible with metal-ion-bearing MICROPOSIT developers


Removal Property

• Residue-free photoresist removal using standard MICROPOSIT removers


Figure 1. Masking Linearity SEMS


0.80 µm Lines/Spaces


0.70 μm Lines/Spaces

0.60 μm Lines/Spaces

 $0.50\;\mu m\;Lines/Spaces$

0.48 µm Lines/Spaces

INSTRUCTIONS FOR USE

The following instructions cover the use of MICROP-OSIT S1800 Series Photoresists for all levels of micro-electronic device fabrication. Exact process parameters are application and equipment dependent.

SUBSTRATE PREPARATION

MICROPOSIT S1800 Series Photoresist work well with the hexamethyldisilazane-based MICROPOSIT Primers. Concentrated MICROPOSIT Primer is recommended when vacuum vapor priming. Diluted primer is recommended for liquid phase priming applications.

COAT

MICROPOSIT S1800 Series Photoresists provide uniform defect-free coatings over a wide range of film thicknesses. The film thickness versus spin speed plots displayed in *Figures 2 and 3* provide the information required to properly select a MICROPOSIT S1800 Photoresist version to meet process dependent thickness specifications. Maximum coating uniformity is typically attained between the spin speeds of 3,500–5,500 rpm.

	Table 2. Process Conditions (Refer to Figures 2 and 3)			
Substrate Silicon		Silicon		
	Coat	SVG 81		
Softbake II5°C/60 sec. Hotplate		115°C/60 sec. Hotplate		
	Measure	Nanometrics 210		

The dispersion curve and Cauchy equation displayed in *Figure 4* describe how the refractive index of the photoresist film varies as a function of the wavelength of light incident upon the film. This information is required to program ellipsometric and other optically-based photoresist measuring equipment.

Table 3. Process Conditions (Refer to Figure 4)		
Substrate	Silicon 13,675Å	
Coat		
Softbake	115°C/60 sec. Hotplate	
Measure	Prometrix SM300	

Figure 2. MICROPOSIT S1800 Photoresist Undyed Series Spin Speed Curves

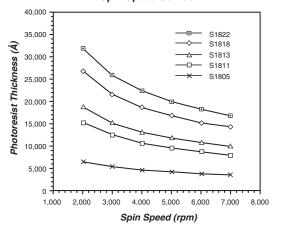
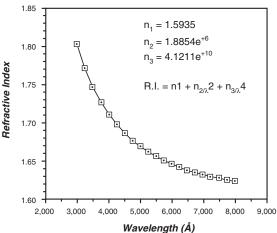



Figure 3. MICROPOSIT S1800 Photoresist Dyed Series Spin Speed Curve

Figure 4. MICROPOSIT S1813 Photoresist Dispersion Curve

EXPOSURE

Proper film thickness selection is critical in order to reduce photospeed and critical dimension variability. The interference curves displayed in *Figure 5* illustrate the photospeed variability as a function of film thickness. Dyed version suppress the interference effects which are more pronounced when exposing with monochromatic light sources and when using reflective substrates.

	Table 4. Process Conditions (Refer to Figure 5)			
	Substrate Silicon			
Coat GCA 1006 WAFERTRAC		GCA 1006 WAFERTRAC™		
	Softbake	115°C/60 sec. Hotplate		
	Expose	GCA 8500 g-line (0.35 NA)		
	Develop	MF-31/10 +30 DSP @ 21°C		

MICROPOSIT S1800 Series Photoresists can be exposed with light sources in the spectral output range of 350–450 nm. The exposure properties have been optimized for use at 436 nm. *Figures 6* shows the absorbance spectrums for MICROPOSIT S1813 Photoresists.

Table 5. Process Conditions (Refer to Figures 6 and 7)				
Substrate	Quartz			
Coat	12,300Å			
Softbake	115°C/60 sec. Hotplate			
Expose	Oriel Scanning Wedge			
Develop	Hewlett Packard 8450A Spectrophotometer			

Table 6 summarizes the Dill parameters for each MICROPOSIT S1800 Series Photoresist version. Dill parameters are used in optical exposure models such as SAMPLE and PROLITH.

Table 6. Dill Parameters					
	365 nm		436 ı	nm	
Photoresist	Α (μm ⁻¹)	B (μm ⁻)	Α (μm ^{-ι})	Β (μm ⁻)	
S1813	1.07	0.31	0.61	0.08	
S1813 J2	1.07	0.49	0.59	0.61	
S1813 JI	1.06	0.42	0.57	0.37	

Figure 5. MICROPOSIT S1813 Photoresist Interference Curve

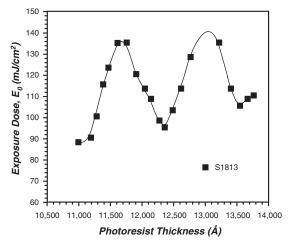


Figure 6. MICROPOSIT S1813 Photoresist Absorbance Spectrum

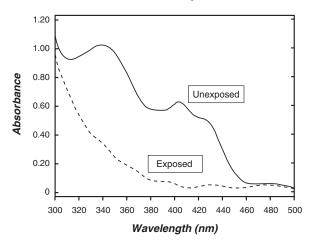


Figure 7 displays a contrast curve for MICROPOSIT S1813 Photoresist developed with MICROPOSIT MF-321 Developer. In general, high contrast values correlate to higher angle wall profiles.

Table 7. Process Conditions (Refer to Figure 8)			
Substrate	Silicon 12,300Å 115°C/60 sec. Hotplate GCA 8500 g-line (0.35 NA)		
Coat			
Softbake			
Expose			
Develop	MF-321/10 +30 DSP @ 21°C		

DEVELOP

MICROPOSIT S1800 Series Photoresists are compatible with both metal-ion-free (MIF) and metal-ion-bearing (MIB) developers. A photoresist and developer system is dependent upon specific application requirements. Contact your local Rohm and Haas Electronic Materials Technical Sales Representative for additional product information.

Figures 8–10 (this page and next) illustrate the lithographic functionality of MICROPOSIT S1813 Photoresist using process parameters designed to maximize resolution while maintaining excellent exposure and focus latitude (refer to SEM photographs in Figure 9). The functional lithographic responses are summarized in Table 9.

Table 8. Process Conditions (Refer to Figure 9)			
Substrate	Silicon		
Coat	12,300Å		
Softbake	115°C/60 sec. Hotplate		
Expose	Nikon I 505 G6E g-Line (0.54 NA)		
Develop	MF-321/10 +30 DSP @ 21°C		

Table Lithographic Responses Summary				
Sizing Energy	150 mJ/cm² (1.3 E ₀)			
Resolution	0.48 μm			
Masking Linearity (±10% CD)	0.50	0.50 μm		
	1.0 μm L/S	0.60 µm L/S		
Exposure Latitude (±10% CD)	65%	45%		
Focus Latitude (±10% CD) ≤85° Wall Angle	2.25 μm	1.25 μm		

Figure 7. MICROPOSIT S1813 Photoresist Contrast Curve

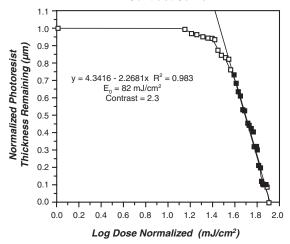


Figure 8. MICROPOSIT S1813 Photoresist Masking Linearity Plot

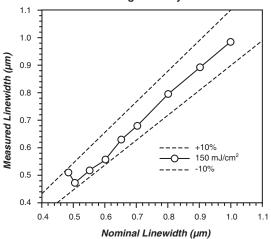


Figure 9. MICROPOSIT S1813 Photoresist Exposure Latitude Plot

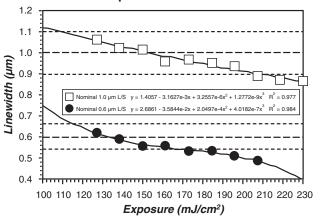


Figure 10. MICROPOSIT S1813 Photoresist Focus Latitude Plot

HANDLING PRECAUTIONS

Before using this product, consult the Material Safety Data Sheet (MSDS)/Safety Data Sheet (SDS) for details on product hazards, recommended handling precautions and product storage.

CAUTION! Keep combustible and/or flammable products and their vapors away from heat, sparks, flames and other sources of ignition including static discharge. Processing or operating at temperatures near or above product flashpoint may pose a fire hazard. Use appropriate grounding and bonding techniques to manage static discharge hazards.

CAUTION! Failure to maintain proper volume level when using immersion heaters can expose tank and solution to excessive heat resulting in a possible combustion hazard, particularly when plastic tanks are used.

STORAGE

Store products in tightly closed original containers at temperatures recommended on the product label.

DISPOSAL CONSIDERATIONS

Dispose in accordance with all local, state (provincial) and federal regulations. Empty containers may contain hazardous residues. This material and its container must be disposed in a safe and legal manner.

It is the user's responsibility to verify that treatment and disposal procedures comply with local, state (provincial) and federal regulations. Contact your Rohm and Haas Electronic Materials Technical Representative for more information.

Circuit Board Technologies

CMP Technologies

Flat Panel Display Technologies

Microelectronic Technologies

Packaging and Finishing Technologies

For locations and information please visit www.rohmhaas.com

Microposit, MF, S1800, Rohm and Haas, and Rohm and Haas Electronic Materials are trademarks of Rohm and Haas Company, Philadelphia, PA, USA, or its affiliates.

 UNITED STATES
 JAPAN
 ASIA
 EUROPE

 Marlborough, MA
 Tokyo
 Hong Kong
 Paris, France

 Tel: 800.832.6200
 Tel: +81.3.5213.2920
 Tel: +852.2680.6888
 Tel: +33.1.40.02.54.00

Fax: 508.485.9113 Fax: +81.3.5213.2921 Fax: +852.2680.6333 Fax: +33.1.40.02.54.07

For Industrial Use Only. This information is based on our experience and is, to the best of our knowledge, true and accurate. However, since conditions for use and handling of products are beyond our control, we make no guarantee or warranty, expressed or implied, regarding the information, the use, handling, storage or possession of the products, or the applications of any process described herein or the results sought to be obtained. Nothing herein shall be construed as a recommendation to use any product in violation of any patent rights.