AG-919 is designed for screen printing in:

- flex circuit
- membrane switch
- other printed electronic applications

DESCRIPTION

- Silver filled, electrically conductive, screen printable ink or coating
- Outstanding crease resistance
- Extremely heat stable, tough, scuff resistant, crease resistant and has excellent adhesion to most metal surfaces, as well as to polyester, polyimide and polycarbonate films
- Can be thinned with solvent for spraying or dipping for EMI/RFI shielding applications
- Can be printed as thin base layers for plating processes

AG-919 is compatible with our UV curable dielectrics, silver/silver chloride inks, conductive epoxy adhesives and our UV curable component encapsulants and conformal coatings

TYPICAL PROPERTIES

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Thixotropic silver colored paste</td>
</tr>
<tr>
<td>Viscosity : Brookfield DV III Ultra SC4-14 spindle @ shear 2, 25°C</td>
<td>24,000 to 30000 cps</td>
</tr>
<tr>
<td>Thixotropic Ratio</td>
<td>~2.8</td>
</tr>
<tr>
<td>Drying Time</td>
<td>90 sec. to 4 min. at 130°C depending upon air flow and print thickness</td>
</tr>
<tr>
<td>Total % NV Solids</td>
<td>68% +/- 2%</td>
</tr>
<tr>
<td>Hegman Gauge</td>
<td><25 µ</td>
</tr>
<tr>
<td>Surface Resistivity</td>
<td><.040 Ω/square /mil</td>
</tr>
<tr>
<td>Shelf Life</td>
<td>6 months in unopened container</td>
</tr>
</tbody>
</table>
AG-919 Heat Stable Silver Ink

Application Guidelines

AG-919 will settle when it is stored in sealed containers over a period of time. It is essential to mix the material thoroughly before use to re-disperse any settled silver particles and to return the ink to a more desirable viscosity.

Screening

AG-919 is designed to be applied by silk screening.

Thinning & Cleanup

Use Solvent 20 for thinning. Use Solvent 10 or suitable screen cleaner for cleaning. If faster drying time is required, contact Applied Ink Solutions for solvent recommendations. If solvent based inks are left on screens for any length of time, the ink will gradually thicken as solvent evaporates. If ink is to be left on an inactive press for any length of time, solvent evaporation can be minimized by pooling the ink into a small area instead of leaving it spread out over a large area. Pooling the ink reduces the surface area, thus slowing the drying process. Always check the viscosity of ink that has been recovered from a screen and add small amounts of solvent while mixing thoroughly to restore viscosity. Solvent can be added to reclaim thickened ink as long as the ink has not dried and hardened completely.

Drying

It is essential that all residual solvent be removed from this ink once it is applied. Incomplete drying will cause the ink to appear dry on the surface while trapping solvent underneath the surface. Over time, this trapped solvent will migrate out of the ink, and can cause adhesion problems with any material, such as dielectrics or film laminates, applied over the ink.

Completeness of Drying

Evaluate the point-to-point resistance along one of the screened conductive paths after one pass through the drying oven or one cycle in a batch-drying oven. Run the substrate through another drying cycle. Measure the point-to-point resistance again along the same path and compare it to the original reading. If the resistance decreases by less than 10%, then the ink is essentially dry after the first drying cycle or pass through the oven. If the resistance decreases by more than 10%, then more drying time is required to completely remove the solvent.

Health & Safety

Products manufactured by Applied Ink Solutions are intended for use in an industrial environment by trained personnel. Please follow proper health/safety processes regarding storage, handling and processing of the products.