

DuPont™ Cyclotene™ 4000 Series

Advanced Electronics Resins (Photo BCB)

Processing Procedures for Cyclotene™ 4000 Series Photo BCB Resins DS2100 Puddle Develop Process

Regional Product Availability

- North America
- Europe, Middle East and Africa
- · Latin America
- Asia-Pacific

Introduction

The Cyclotene™ 4000 Series Advanced Electronics Resins are I-line-, G-line-, and broad band-sensitive photopolymers that have been developed for use as dielectrics in thin film microElectronicss applications. These polymers are derived from B-staged bisbenzocyclobutene (BCB) chemistry and have final film properties that are similar to the dry etchable 3000 series. Products are listed in Table 1. Note that, for the thicker and thinner XUS products, the DS2100 develop process described in this guide is possible but immersion develop with D3000 is preferred. Please see our related immersion develop processing guide for more details on this process. Properties of Cyclotene™ Resins are shown in Tables 2–4 and Figure 1. Additional information on Cyclotene™ Resins can be found on the web site, www.cyclotene.com.

Table 1. Photo-BCB Formulations

Cyclotene [™] Resin	Viscosity (cSt)	Cured Thickness* (µm)
XUS35078 type 2	96	1.8 – 3.6
4022-25	34	0.8 – 1.8
4022-35	192	2.5 – 5.0
4024-40	350	3.5 – 7.5
4026-46	1100	7.0 – 14.0
XUS35078 type 3	1950	15 – 30

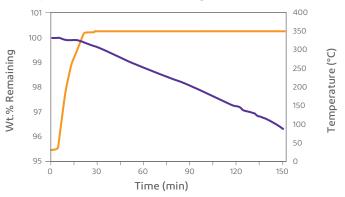
^{*}The thickness data given above should not be construed as product specification

Table 2. Electrical and Thermal Properties of Photo-BCB (Cyclotene™ 4000 Resin Series)

Property	Value
Dielectric constant (1 kHz – 20 GHz)	2.65
Dissipation factor	0.0008
Breakdown voltage	5.3 MV/cm
Leakage current	4.7 x 10 ⁻¹⁰ A/cm ² at 1.0 MV/cm
Volume resistivity	1 x 10 ¹⁹ Ω-cm
Thermal conductivity	0.29 W/m°K at 24 °C
Thermal stability	1.7% weight loss per hour at 350 °C

Table 3. Mechanical Properties of Photo-BCB (Cyclotene™ 4000 Resin Series)

Property	Value
CTE	42 ppm/°C at 25 °C
Tg	>350 °C
Tensile modulus	2.9 ± 0.2 GPa
Tensile strength	87 ± 9 MPa
Elongation at break	8 ± 2.5%
Poisson ratio	0.34
Stress on Si at 25 °C	28 ± 2 MPa


Material Arrival and Storage

Photosensitive Cyclotene™ advanced electronics resins are shipped frozen in dry ice. If your shipment arrives with no dry ice and is warm, please contact your local DuPont representative.

Table 4. Equilibrium wt % Water in Photo-BCB at Various RH at 23 °C

Cycletone™ Design	Film Thiskness (com)	Rela	tive Humidity	/ (%)
Cyclotene [™] Resin	Film Thickness (µm)	30	54	84
4024-40	5	0.061	0.075	0.14
4026-46	10	0.058	0.077	0.14
4026-46	20	0.050	0.082	0.14

Figure 1. Weight Loss from a 10 μm Film of Cyclotene™ 4026-46 Resin by Isothermal TGA Under Nitrogen at 350 °C

Precipitation of a photo additive can sometimes occur with Cyclotene™ 4022-35, and occasionally with Cyclotene™ 4024-40 Resins. The additive readily re-dissolves upon warming to room temperature. Should this occur, some gentle mixing of the contents is desirable to facilitate a homogeneous solution. See our application note on bottle rolling procedures for more information. An alternative is to remove the product from the dry ice and store it at −30 °C to −40 °C, as we have found that it is the transition from −78 °C to −15 °C that tends to initiate crystallization. Allowing the material to warm to room temperature before placing in the freezer also helps avoid precipitation.

Storage

As photosensitive Cyclotene™ Resin ages, the spun-on thickness, and the develop end point, will gradually increase. The lifetime is based on the criterion of less than 5% change in thickness. Resins should be allowed to equilibrate to room temperature before use. Recommended storage conditions and times are shown in Table 5.

Table 5. Recommended Storage Temperatures and Times

Storage Need	Temperature	Shelf Life
Long term	Freezer (-15 °C)	12–18 months from date of manufacture
Medium term	Refrigerator (4 °C)	1–2 months
Short term	Clean room (20 °C)	5–10 days

Processing

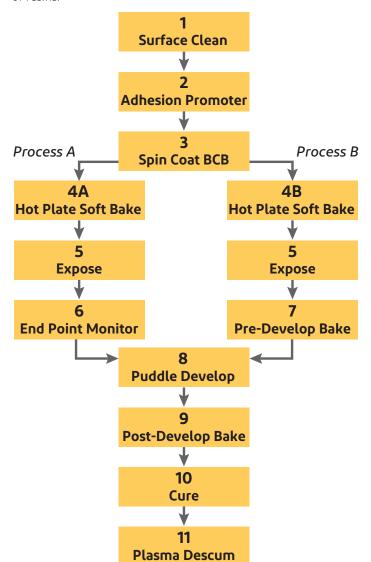
Several process options are available, and are shown in **Figure 2**. Process A uses a hot plate soft bake and includes a develop end point monitor with each lot. Process B uses a hot plate soft bake and a pre-develop bake to stabilize the develop end point. (See below for further description of these process options.) An oven soft bake is also possible. The process that you choose is dependent on tool capabilities and manufacturability requirements.

Surface Preparation

Substrates to be coated with Cyclotene™ Resin should be free of all organic impurities and other contaminations prior to coating. A clean surface is important to facilitate good adhesion. An example of a cleaning procedure is an oxygen plasma clean, followed by dump rinse and spin-rinse dry.

Adhesion Promoter

Adhesion promoter is recommended whenever the resin is to be adhered to any exposed metal or inorganic (silicon oxide, silicon nitride, alumina) surfaces. For example, we recommend adhesion promoter application between multiple coatings of BCB if there is metal sandwiched between the two BCB layers. The recommended adhesion promoter is AP3000, which is an organosilane coupling agent in an organic solvent. It comes premixed and does not require further mixing or dilution.


We recommend the use of AP3000 for most surfaces, including silicon oxide, silicon nitride, silicon oxynitride, aluminum, copper, titanium and chromium.

Adhesion promoter is applied by dispensing statically or dynamically to cover the surface of the wafer. The wafer is then spun dry at 3000 rpm for 10–20 seconds.

Though often not required, the adhesion to surfaces such as silicon nitride, silicon oxide, copper, and aluminum, can be enhanced by baking the adhesion promoter for 30 seconds at 100–150 °C, depending on surface, prior to BCB application. Please see our application note "Processing Procedures for BCB Adhesion" for more details on adhesion of BCB to various surfaces.

Figure 2. Process Flows for Cyclotene™ 4000 Series Advanced Electronics Resins

NOTE: Vapor prime adhesion promoters developed for photoresists (e.g., HMDS) do not work with the Cyclotene™ family of resins.

BCB Coating

Equipment

It is recommended that coaters be equipped with two dispense heads (Cyclotene™ Resin and Adhesion Promoter), backside rinse and EBR capability, hot plates and bowl exhaust.

Coating Process

Photo BCB films are spun onto the substrate directly after the adhesion promoter application and spin dry. The precise conditions used to deposit the resins (e.g. spin speed) will vary according to the final film thickness desired and which formulation of resin is being used. **Table 6** shows thickness vs spin speed for Cyclotene™ 4022-35, 4024-40, and 4026-46 Resins after soft bake (see section 4) and final thickness after exposure, development, and cure. Most of the loss in film thickness in the final, cured film occurs during the develop step. The loss in film thickness during the cure step (other than removal of residual developer solvent) is less than 5%. The thicknesses in **Table 6** were determined using an open spin bowl. If a covered or closed cup coater is used, the thicknesses will differ and will depend on spin time as well as spin speed. **Figure 3** shows a comparison of film thickness using open and closed bowl configurations.

Thicknesses of the XUS photosensitive products are shown in **Table 7**.

Final hard cured film thickness is also a function of subsequent processing steps, including soft bake conditions, exposure dose and development as explained in those sections below.

Dispense Resin

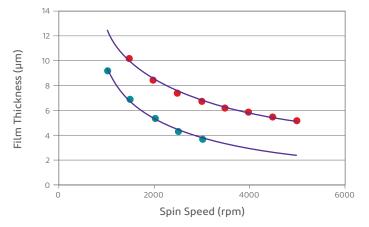
Dispense a puddle of resin of 1–5 ml (depending on topography, substrate size and resin viscosity) onto the center of the wafer. Either static or dynamic dispense (10–100 rpm) can be used. Alternatively, a reverse radial dispense can be used, which has been found to improve the material usage efficiency.

Spread

Increase the substrate speed to 500 rpm for about 5–10 seconds to spread the resin out from the center of the substrate.

Spin

Increase the substrate speed to a rate that will achieve the desired pre-exposure thickness (see **Tables 6, 7**). Backside rinse during spin of Cyclotene™ 4026-46 Resin during the spin process will help suppress polymer filament ("cotton candy") formation.


Table 6. Typical Cyclotene™ 4000 Series Advanced Electronics Resin Thicknesses After Soft Bake, and Final Thicknesses After Full Photo Processing and Hard Cure (not to be construed as product specification)

	Thickness (μm)						
Spin speed	4022-25	402	2-35	402	4-40	402	6-46
(rpm)	After soft bake	After soft bake	Final thickness	After soft bake	Final thickness	After soft back	Final thickness
1500	2.4	6.9	5.2	10.2	7.2	18.5	14.2
2000	2.0	5.8	4.3	8.4	5.9	15.2	11.6
2500	1.83	5.2	3.8	7.3	5.2	13.3	10.2
3000	1.60	4.7	3.4	6.7	4.8	12.2	9.4
3500	1.41	3.1	6.2	4.4	4.4	11.3	8.7
4000		2.9	5.8	4.1	4.1	10.6	8.1
5000		2.6	5.2	3.7	3.7	9.4	7.3

Table 7. Thicknesses of XUS35078 Photo-Sensitive Products After Soft Bake

Spin speed (rpm)	XU35078 type 2 thickness (μm)	XU35078 type 3 thickness (μm)
1000	6.22	37.3
1500	4.60	27.2
2000	3.90	21.3
2500	3.53	18.2
3000	3.11	15.8
3500	2.92	14.5
4000	2.72	13.4

Figure 3. Spine Curves of Cyclotene™ 4024-400 Resin in Open and Closed Bowl Configurations (spin time was 30 seconds)

Edge Bead Removal and Backside Rinse

Decrease the substrate speed to 600–1000 rpm and dispense the backside solvent (T1100 rinse solvent) for 5–10 seconds to remove any contamination from the back side of the substrate and remove the "bead" that has formed on the front side edge. Increase the speed and spin for 10 seconds to dry (do not exceed the original spin speed). Top side edge bead removal can also be used, either from a dispense head on a track or manually with a syringe.

Soft Bake

After spin coating, the films should be heated for a short period of time to drive out residual solvent. The specific time and temperature are dependent on the composition of the substrate as well as the thickness of the film. This can be done on a hot plate, in conjunction with a develop end point monitor (Step 4A) or in conjunction with a pre-develop bake (Step 4B). Either Step 4A or Step 4B is used and correspond to Process A and B in Figure 2, respectively. The soft bake is normally carried out immediately after spin coating.

If rework is needed after coat and soft bake, the film can be stripped with T1100 rinse solvent. Either a puddle process on a track or immersion in a tank can be used. DS2100 developer can also be used to remove an unexposed film.

Hot Plate Soft Bake; Develop End Point Monitor (Process A)

The recommended hot plate bake temperature depends on the thickness of the film after coat and bake. Recommended bake temperatures when using the end point monitor process are shown in **Table 8**. The end point monitor process is explained in more detail in Step 6. These are suggested guidelines; with the develop end point monitor process the soft bake temperature is not critical. The soft bake time and temperature will, however, have an effect on the subsequent processing. A higher soft bake temperature will lead to a longer develop time, a slight decrease in final film thickness, and a slight decrease in the amount of scum left behind after develop.

Hot Plate Soft Bake, Pre-Develop Bake Process (Process B)

The recommended hot plate bake temperatures when using a pre-develop bake process (Step 7) are shown in **Table 9**. Bake temperatures higher than those indicated in **Table 9**, when used in conjunction with a pre-develop bake, can lead to cracking of the film.

Exposure

Note: Cyclotene[™] Resins are negative acting, i.e., the exposed regions are crosslinked and will remain behind after development.

After the soft bake, the substrates should be cooled to room temperature before photolithography. The photo-BCB films should be given an exposure dose appropriate for the thickness of the film. Typical exposure doses for photo-BCB films are given in **Table 10**. For example, a film of Cyclotene 4024-40 spun at 2500 rpm will have a thickness after soft bake of 7.4 μ m, thus, the recommended dose will be 25 mJ/cm²/ μ m x 7.4 μ m = 185 mJ/cm².

These doses were based on intensity measured at I-line and were determined on a proximity/contact aligner with broad-band exposure. Exposure dose and focus (gap setting for proximity printers, focal offset for steppers or projection printers) will have an effect on film quality, resolution, and side wall slope. If exposure tools with only I-line or only G-line radiation are used (e.g., steppers), a higher exposure dose will be needed.

Narrow band I-line steppers give good results with thin films ($<5~\mu m$), but the process window becomes smaller as the thickness increases. On broad band steppers, G/H-line exposure is preferred, and I-line exposure is not recommended.

Note: When the coating thickness varies due to topography on the wafer, the exposure dose should be based on the thickness of the thickest regions.

Note: These recommended doses were determined on silicon substrates. Re-optimization of the dose may be necessary based on substrate roughness and reflectivity (e.g., ceramic substrates, varying topology).

Exposure can be performed essentially immediately after soft bake, as soon as the wafer has cooled to room temperature. The delay time between soft bake and exposure can be at least 24 hours with no adverse effects. Slight film thickness drift, and CD loss, may be seen at longer delay times.

When fabricating multilayer devices, BCB is deposited on top of BCB. In these cases, higher exposure doses are often needed for the second and subsequent BCB layers, because of absorption of light by the underlying BCB and loss of reflected light. Insufficient exposure can lead to wrinkling of the film during the develop step.

Table 8. Hot Plate Soft Bake Temperatures for End Point Monitor Pass (all bakes are for 90 seconds)

Cyclotene [™] Resin Pre-Exposure Thickness (μm)	Hot Plate Bake Temp (°C)
<4.5	70
4.6 – 6.6	75
6.7 – 8.7	80
8.8 – 10.0	85
10.1 – 11.4	90
11.5 – 15.6	95
>15.6	100

Table 9. Hot Plate Soft Bake Temperatures for Pre-Develop Bake Process (all bakes are for 90 seconds)

Cyclotene™ Resin Pre-Exposure Thickness (μm)	Hot Plate Bake Temp (°C)
<4.5	60
4.6 – 6.6	65
6.7 – 8.7	70
8.8 – 10.0	75
10.1 – 11.4	80
11.5 – 15.6	85
>15.6	90

Table 10. Exposure Dose For Cyclotene™ 4000 Series Resins (broad band exposure, measured at l-line)

Cyclotene [™] Resin	Exposure Dose (mJ / cm² per µm of pre-exposure film thickness)
4022-35	20
4024-40	25
4026-46	60

Table 11. Hot Plate Pre-Develop Bake Temperatures

Cyclotene™ Resin Pre-Exposure Thickness (μm)	Pre-Develop Bake Temp (°C)
<4.5	50
4.6 – 6.6	55
6.7 – 8.7	60
8.8 – 10.0	65
10.1 – 11.4	70
11.5 – 15.6	75
>15.6	80

End Point Monitor (Process A)

If a pre-develop bake is not used, it is recommended that the end point time be established for each processing lot. The time can be determined by including a monitor substrate with the lot of substrates being processed. The monitor substrate is preferably a blank silicon wafer. This wafer is coated and baked identically to the other substrates, but should not be exposed. This wafer is developed as described in Step 8 below while looking for the time to endpoint. The end point "clearing" will show up as the end of a colored interference fringing pattern moving across the surface of the wafer. Without an end point monitor wafer (unexposed substrate), this effect is difficult or impossible to see on patterned and exposed substrates. Figure 4 shows the increase of the develop end point time as a function of the time delay between soft bake and develop, when a wafer has been left at room temperature.

Pre-Develop Bake (Process B)

Before solvent development, a hot plate bake step can be added to stabilize the development end point time. Without this bake, the develop-ment end point time will increase as the film sits at room temperature, and is thus dependent on the time delay between process steps (see Figure 4). Pre-develop bake temperatures for different film thicknesses are shown in Table 11. Note that these temperatures are 10°C lower than the soft bakes shown in Table 9. The pre-develop bake temperature should be approximately 30 seconds in duration. The pre-develop bake must be carried out immediately before developing the wafer, otherwise the end point will again drift toward longer times. However, the process is reversible and another pre-develop bake will again reset the end point. In addition to the time delay, the actual end point will be a function of film thickness, soft bake time and temperature, and developer temperature. For this reason a develop end point cannot be precisely defined here; each user will have to determine the end point at their facility on their tool set by developing at least one monitor substrate. A pre-develop bake will eliminate develop end point variation due to time delays. The user should realize that, in addition, the variables listed above need to be stable and controlled to achieve a uniform develop end point.

Develop

Pattern development after exposure can be accomplished by puddle, immersion, or spray techniques. This processing guide is based on a puddle develop process. Please refer to "Processing Procedures for Cyclotene™ 4000 Series Photosensitive Resins (Immersion Develop)" for immersion development processing guidelines.

Puddle development uses DS2100 developer; immersion development uses DS3000 developer. These developers cannot be interchanged.

Develop can follow immediately after exposure; no wait time is needed. The delay time between exposure and develop can be at least 48 hours with no adverse effects. Some slight thickness drift, and CD loss, may be seen at longer delay times.

Dispense DS2100 Developer Solvent

Place the exposed substrate onto the chuck of the spin coater or track coater and dispense a puddle of developer onto the surface. Slow rotation of the substrate (50 rpm) helps to spread the solvent front. Sufficient developer is applied to allow the puddle to completely cover the wafer (10-15 ml for a 6" wafer).

Develop

The wafer is allowed to sit with developer on it for a predetermined length of time to allow dissolution of the unexposed areas. If an end point monitor (Step 6) is included with the lot, this is used to determine the develop time. The total develop time should be about 130% of the end point (i.e., overdevelop by 30%) if end point monitors are used. When using the predevelop bake (Process B) the develop time should be 150% of the develop end point (50% over-develop) with Cyclotene™ 4022-35 and 4024-40 Resins, and 175% of the develop end point (75% overdevelop) with Cyclotene™ 4026-46 Resin. In all cases, the 10 second rinse (see below) is included in this total develop time. Thus, for example, if an end point monitor is used and the develop end point is 50 seconds, the total develop time will be 65 seconds (end point + 30%); the puddle time will be 10 seconds.

Rinse

When the puddle time is complete the wafer is rinsed by spinning at 500 rpm for 10 seconds while a stream or spray of DS2100 is dispensed onto the center of the wafer. (Note that the develop solvent and the rinse solvent are the same). This is a solvent develop process; water rinsing is not recommended. Following the rinse, the wafer is spun at 2000–2500 rpm for 30 seconds to remove the developer solvent and dry the wafer. Higher spin speeds have been found to cause anomalies in the via side wall, so the spin speed during the dry step should not exceed 2500 rpm.

Rework

Once the film is exposed, it is insoluble in most solvents. Exposed and developed films can be reworked by stripping in Primary Stripper A. The wafer is immersed in the stripper bath for 30 minutes at room temperature or for 5 minutes at 80 °C. This is followed by a rinse in IPA and a water rinse. The stripper absorbs atmospheric moisture at room temperature, which inactivates the bath and makes it corrosive to metals. Use at 80 °C is recommended because the bath remains dry at this temperature. If the stripper is to be used at room temperature, it is recommended that only a freshly poured bath be used, and that the chemical not be re-used. See "Rework Procedures for CYCLOTENE 3000 Series and 4000 Series Resins" for more details.

Post-Develop Bake

The wafer should be baked on a hot plate immediately after developing. This serves to further dry the film and to stabilize the via side- wall. The temperature is not critical but the timing is. If this bake is omitted or delayed by more than about 60 seconds, inconsistencies in the shape of the via sidewall may be observed. The post-develop bake is typically carried out at 60–90 °C for 60 seconds.

Cure

After photolithographic processing is complete, the film is cured. A variety of equipment can be used for curing Cyclotene^{∞} Resins, such as a box oven, belt furnace, tube furnace, and hot plate. Except for early out-gassing of residual solvent, Cyclotene^{∞} Resins do not evolve volatiles during cure, and thus there are no constraints on the heating rate. The only requirement is that, since films of Cyclotene^{∞} Resin are susceptible to oxidation at elevated temperatures, the film must be under an inert atmosphere at high temperature (recom-mended: <100 ppm of O_2 at >150 °C). Please refer to "Cure and Oxidation Measurements for Cyclotene^{∞} Advanced Electronics Resins". Thus, the maximum oven ramp rate depends on how rapidly the oven can be purged of oxygen. The extent of cure is a function of time and temperature, as shown in **Figure 5**.

Two different cure profiles are commonly used: "soft" or partial cure (approximately 80% conversion) and "hard" or full cure (>95% conversion). Soft cure is used for lower BCB layers when multiple BCB layers are used in a structure; it provides improved adhesion between the polymer layers. Hard cure is used when one layer is used, or for the last layer in a multilayer build. It gives the film maximum chemical resistance and stable mechanical and electrical properties. In a box oven, a temperature of 210 °C for 40 minutes is used for soft cure, and a temperature of 250 °C for 60 minutes is used for hard cure. Recommended cure profiles are shown in Table 12.

The time delay between develop and cure can be up to 4 days with no adverse effects. Some slight change in via resolution may be seen with longer delays. The cure delay time does not affect film thickness or adhesion.

Descum

Following cure the film is descummed by brief exposure to a plasma. A descum is necessary to remove a thin film of polymer residue left behind in the develop process. This residue is typically less than 1000Å thick, hence, a descum process which removes 1000–2000Å of polymer is generally sufficient. Best results are obtained with a parallel plate reactive ion etcher. Isotropic downstream etchers can also be used. Barrel etchers give poor etch uniformity and are not recommended. Since there is silicon in the BCB polymer, etching cannot be done in pure O2; some fluorine is needed in the etch gas mixture. A typical etch gas is 80:20 O₂/CF₄; this provides a good balance of organic etching by O_2 and silicon etching by CF_4 . SF_6 (90:10 O_2/SF_6), or other fluorine sources such as NF₃, can be used instead of CF₄ with good results. Lower concentrations of CF₄ will reduce the silicon etch rate and can lead to an undesirable build-up of a thin layer of amorphous SiO₂ on the surface of the BCB film. This can result in BCB cracking, as well as poor adhesion of materials deposited onto the BCB film.

An O_2/CF_4 or O_2/SF_6 plasma will cause corrosion of copper. If copper metal is exposed during the descum, a 30 second dip in 10% acetic acid is necessary immediately after the descum to prevent corrosion and discoloration of the copper surface.

Figure 5. BCB % Cure vs. Time and Temperature

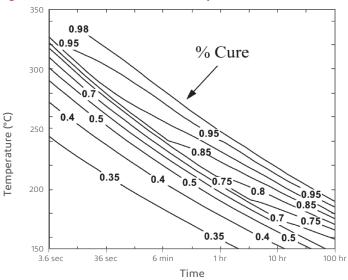


Table 12. Profiles for Convection Oven Curing

Step	Soft Cure	Hard Cure
1	15 min ramp to 150 °C	15 min ramp to 150 °C
2	15 min soak at 150 °C	15 min soak at 150 °C
3	ramp to 210 °C	ramp to 250 °C
4	40 min soak at 210 °C	60 min soak at 250 °C
5	cool to <150 °C	cool to <150 °C

Handling Precautions

Before using this product, associated generic chemicals or the analytical reagents required for its control, consult the supplier's Material Safety Data Sheet (MSDS)/Safety Data Sheet (SDS) for details on material hazards, recommended handling precautions and product storage.

CAUTION! Keep combustible and/or flammable products and their vapors away from heat, sparks, flames and other sources of ignition including static discharge. Processing or operating at temperatures near or above product flashpoint may pose a fire hazard. Use appropriate grounding and bonding techniques to manage static discharge hazards.

CAUTION! Failure to maintain proper volume level when using immersion heaters can expose tank and solution to excessive heat resulting in a possible combustion hazard, particularly when plastic tanks are used.

Storage

Store products in tightly closed original containers at temperatures recommended on the product label.

Disposal Considerations

Dispose in accordance with all local, state (provincial) and federal regulations. Empty containers may contain hazardous residues. This material and its container must be disposed in a safe and legal manner.

It is the user's responsibility to verify that treatment and disposal procedures comply with local, state (provincial) and federal regulations. Contact your DuPont Electronic Materials Technical Representative for more information.

Product Stewardship

DuPont has a fundamental concern for all who make, distribute, and use its products, and for the environment in which we live. This concern is the basis for our product stewardship philosophy by which we assess the safety, health, and environmental information on our products and then take appropriate steps to protect employee and public health and our environment. The success of our product stewardship program rests with each and every individual involved with DuPont products—from the initial concept and research, to manufacture, use, sale, disposal, and recycle of each product.

Customer Notice

DuPont strongly encourages its customers to review both their manufacturing processes and their applications of DuPont products from the standpoint of human health and environmental quality to ensure that DuPont products are not used in ways for which they are not intended or tested. DuPont personnel are available to answer your questions and to provide reasonable technical support. DuPont product literature, including safety data sheets, should be consulted prior to use of DuPont products. Current safety data sheets are available from DuPont.

electronics.dupont.com

For more information on DuPont™ Cyclotene™ or other DuPont products, please visit our website.

The information provided in this data sheet corresponds to our knowledge on the subject at the date of its publication. It may be subject to revision as new knowledge and experience becomes available. This information is not intended to substitute for any testing you may need to conduct to determine for yourself the suitability of our products for your particular purposes. Since we cannot anticipate all variations in end-use and disposal conditions, DuPont makes no warranties and assumes no liability in connection with any use of this information. It is intended for use by persons having technical skill, at their own discretion and risk. Nothing in this publication is to be considered as a license to operate under or a recommendation to infringe any patent right.

CAUTION: Do not use in medical applications involving permanent implantation in the human body. For other medical applications, see "DuPont Medical Caution Statement," H-50102-5 and "DuPont Policy Regarding Medical Applications" H-50103-5.

DuPont", the DuPont Oval Logo, and all products, unless otherwise noted, denoted with TM, SM or ® are trademarks, service marks or registered trademarks of affiliates of DuPont de Nemours, Inc. © 2019 DuPont de Nemours, Inc. All rights reserved.

Form No. 888-00007, Rev 0 (10/19)