


#### **Electronic Materials**



## INTERLINK<sup>™</sup> 9200 Cu TSV

**Advanced Packaging Technologies** 

Dow.com

### Outline

#### ➢ Introduction: TSV for 2.5D and 3D Packaging

#### ≻INTERLINK™ 9200 Cu TSV

□ Formulation

□ Mechanism of bottom-up fill Cu deposition

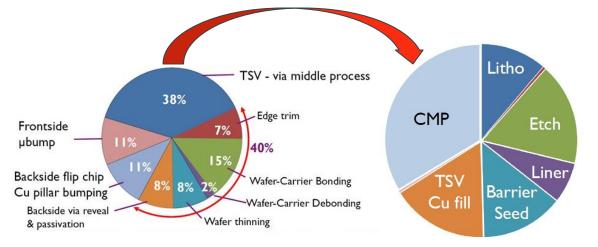
#### Segment Plating Results

□ 5x55 µm via-middle

□ 10x100 µm via-last

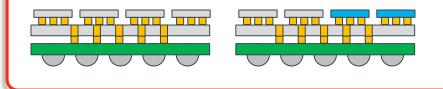
□ High aspect ratio – next-generation devices

#### ➤ 300 mm Plating Results


#### ► INTERLINK<sup>™</sup> 9200 Process Window and Stability

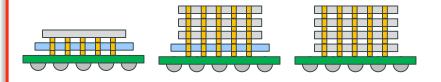
> Conclusions




### Introduction: TSVs for 2.5D and 3D Packaging

- ➤ High performance devices
- Low latency between dies
- Maximum I/O density
- Decreased power consumption
- High costs for CMP and via filling




#### Interposers: 2.5D

- > Able to use existing die layouts
- Can combine high yield die processes already in place
- Bridge to true 3D design



#### Die-stacking: 3D

- New die design layout/rules needed
- Smallest device layout, highest performance

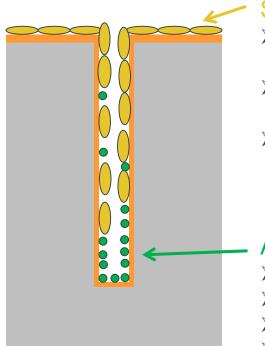




## INTERLINK™ 9200 Cu TSV

### INTERLINK<sup>™</sup> 9200 Cu TSV

**Formulation** 


| INTERLINK™ 9200 Cu TSV Formulation (For Catholyte Chamber) |                                                                 |                                                                                                |                                                               |  |
|------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--|
| Product Name                                               | Function                                                        | Target                                                                                         | Range                                                         |  |
| INTERLINK™ 9200 Accelerator                                | De-polarizer, accelerates Cu plating &<br>allows bottom-up fill | 3 mL/L                                                                                         | 2.5 – 3.5 mL/L                                                |  |
| INTERLINK™ 9200 Suppressor                                 | Polarizer that slows Cu plating and<br>provides wetting of vias | 6 mL/L                                                                                         | 2 – 8 mL/L                                                    |  |
| INTERLINK™ 9200 Leveler                                    | Sidewall polarizer, slows rate of Cu<br>plating                 | 3.5 mL/L                                                                                       | 3 – 4 mL/L                                                    |  |
| INTERLINK™ 9200 Electrolyte                                | Source of Cu ions, provides pH adjustment and bath conductivity | 60 g/L Cu <sup>2+</sup> ;<br>10 g/L H <sub>2</sub> SO <sub>4</sub> ;<br>80 ppm Cl <sup>-</sup> | Cu <sup>2+</sup> : +/- 5%;<br>Acid, Cl <sup>-</sup> : +/- 10% |  |

| INTERLINK™ 9200 Cu TSV Formulation (For Anolyte Chamber) |                                                                      |                                                                                                 |                                                               |  |
|----------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--|
| Product Name                                             | Function                                                             | Target                                                                                          | Range                                                         |  |
| INTERLINK™ 9200 Anolyte                                  | Electrolyte designed to work with Cu<br>anode in the Anolyte Chamber | 60 g/L Cu <sup>2+</sup> ; 0.3 g/L<br>H <sub>2</sub> SO <sub>4</sub> ;<br>80 ppm Cl <sup>-</sup> | Cu <sup>2+</sup> : +/- 5%;<br>Acid, Cl <sup>-</sup> : +/- 10% |  |

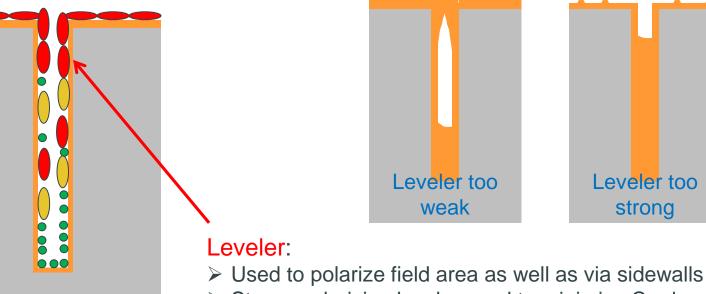
- ► INTERLINK<sup>™</sup> 9200 Cu TSV uses a 3-component additive system (Accelerator, Suppressor, Leveler), with membrane in the plating cell, to deposit Cu in 2.5D & 3D TSV packaging applications
- Additive components specially formulated to allow for rapid, defect-free bottom up filling performance within 10x100 µm and 5x50 µm TSV features
- > Target dosing can be modified to achieve optimized performance on a specific wafer type and pattern layout



#### INTERLINK<sup>™</sup> 9200 Cu TSV Mechanism of Bottom-up Fill



#### Suppressor:


- Used to lower surface tension of plating bath, allowing proper wetting of TSV vias and wafer surface, reducing surface defects
- Weaker suppressor preferred to allow stronger polarizing leveler to polarize via sidewalls
- Suppressor also can compete with accelerator adsorption to the surface, supporting the leveler and offering additional Cu deposition control

#### Accelerator:

- Needed to initiate bottom-up filling at via bottom
- Relatively low dosing needed to maintain bath stability
- Higher doses needed for rapid via filling
- Dosing set by balance between stability and plating rate

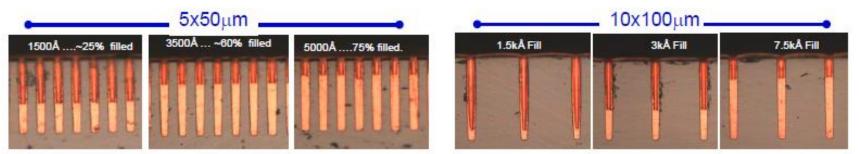


#### INTERLINK<sup>™</sup> 9200 Cu TSV Mechanism of Bottom-up Fill



- Strong polarizing leveler used to minimize Cu deposition on wafer field area and on upper via sidewalls
- Leveler required to prevent plating defects such as pinch-off voids and surface nodules.
- $\succ$  Too strong of leveler causes doping of deposited Cu, surface defects, as well as preventing top of via filling

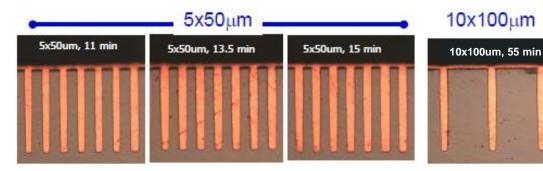



Leveler too

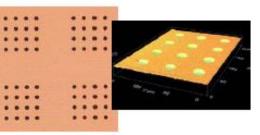
strong

## INTERLINK<sup>™</sup> 9200 Segment Plating Results

#### INTERLINK<sup>™</sup> 9200 Segment Plating Results Partial and Full Fill on 5x55 µm and 10x100 µm Test Wafers

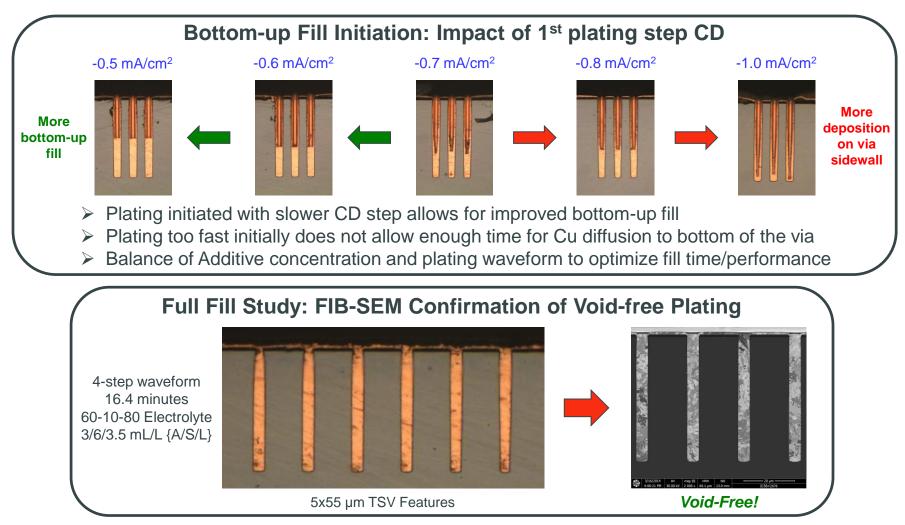

➢ Partial Filling Sequences: Strong polarization at via opening → ideal filling profile




> Via filling speed tests: Rapid filling capability

Plating Cycle times ~15 min (5x50 µm), and ~55 min (10x100 µm) demonstrated in segment level test (wafer dependent)

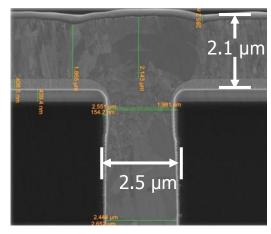
> Full Filling Sequences: Low overburden thickness, smooth deposits




Overburden

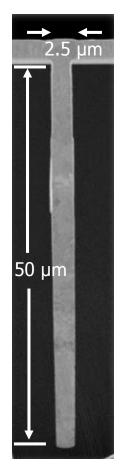


0.80um OB for 1.5um Cu deposit  $R_a \leq 10nm$ 


### INTERLINK<sup>™</sup> 9200 Segment Plating Results Initial Plating Rate and Full Fill Void Inspection



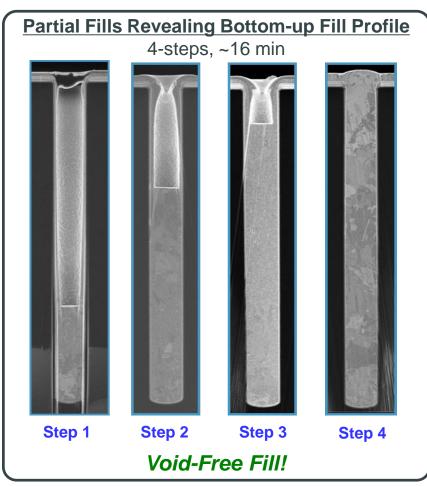
DOW CONFIDENTIAL - Do not share without permission


#### INTERLINK<sup>™</sup> 9200 Segment Plating Results Extension to Next-Generation Applications

- ► INTERLINK<sup>™</sup> 9200 can be extended into future generation applications including TSV features with an aspect ratio of 20:1 (2.5x50 µm)
- Bottom-up fill is maintained with challenging aspect ratio, TSV vias are void-free as confirmed by FIB-SEM
- Cu plating still occurs mostly in-via, with minimal overburden



Images provided courtesy of Applied Materials


4-step plating waveform Void-free fill



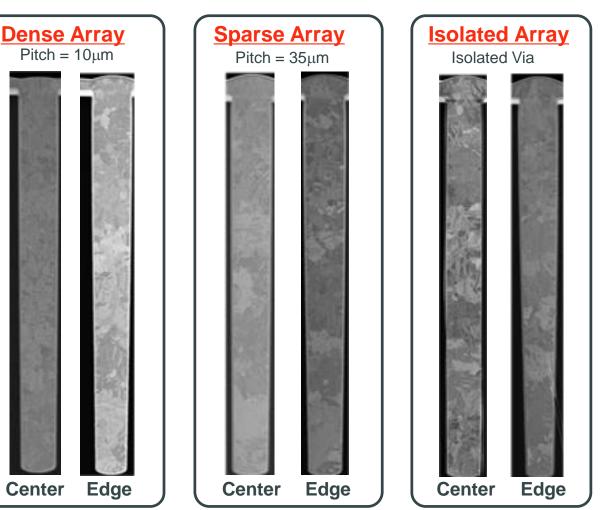



## INTERLINK<sup>™</sup> 9200: 300 mm Plating Results

#### INTERLINK<sup>™</sup> 9200: 300 mm Plating Results Partial and Full Fill on 5x55 µm Test Wafers



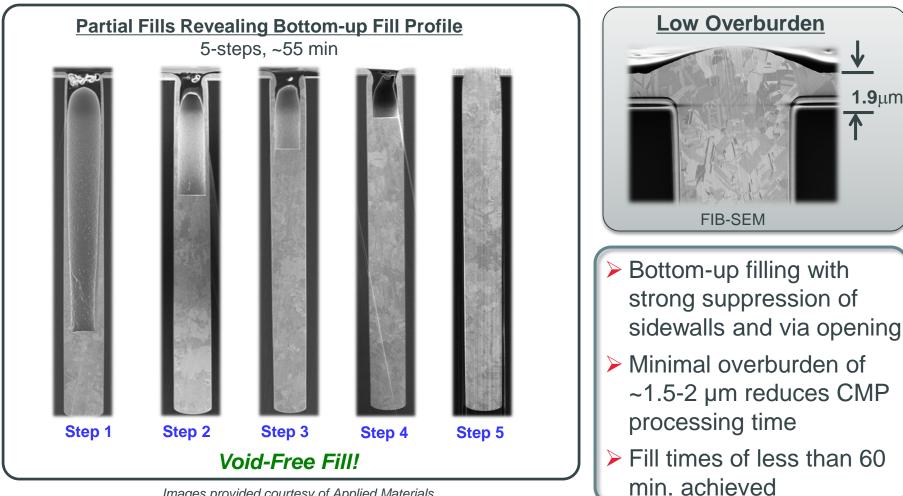
Images provided courtesy of Applied Materials




- Strong sidewall suppression during deposition prevents voiding at the top of the via
- Low total overburden of ~1 um minimizes CMP processing
- Fill times of less than 20 min.



#### INTERLINK<sup>™</sup> 9200: 300 mm Plating Results Center-to-Edge Effects on 5x55 µm Test Wafers


- Uniform plating overburden from center to edge of wafers
- Same via filling rates independent of via pitch, allowing for flexible die layout
- Small changes in via over-bump with pitch, minimizing CMP issues



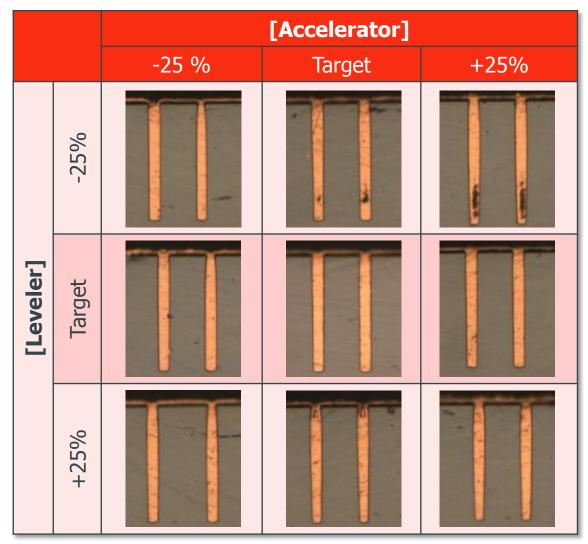
Images provided courtesy of Applied Materials



#### **INTERLINK<sup>™</sup> 9200: 300 mm Plating Results** Partial and Full Fill on 10x100 µm Test Wafers



Images provided courtesy of Applied Materials




1.9µm

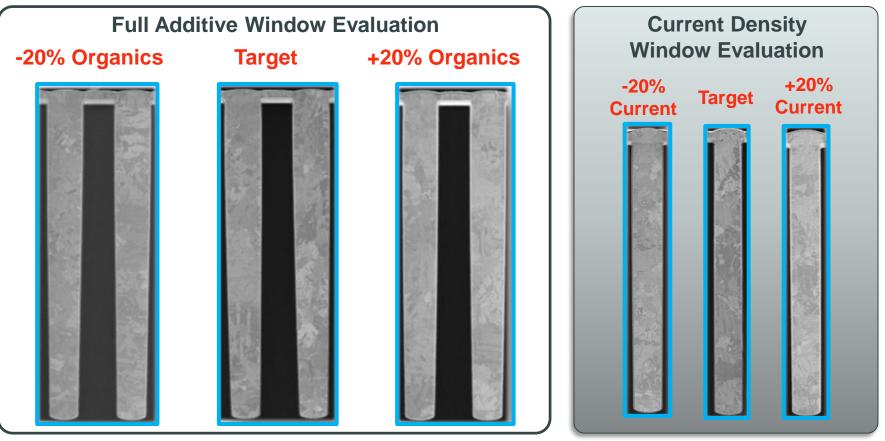


## INTERLINK<sup>™</sup> 9200 Process Window and Stability

### INTERLINK<sup>™</sup> 9200 Process Window and Stability 5x55 µm Test Wafer at Segment Level



- Aggressive filling time enables better centering of chemistry dosing
- Target leveler dosing exhibits void-free full filling with wide accelerator window
- Low leveler content exhibits voiding at via bottoms – not enough sidewall polarization


• 16.5 min. fill time

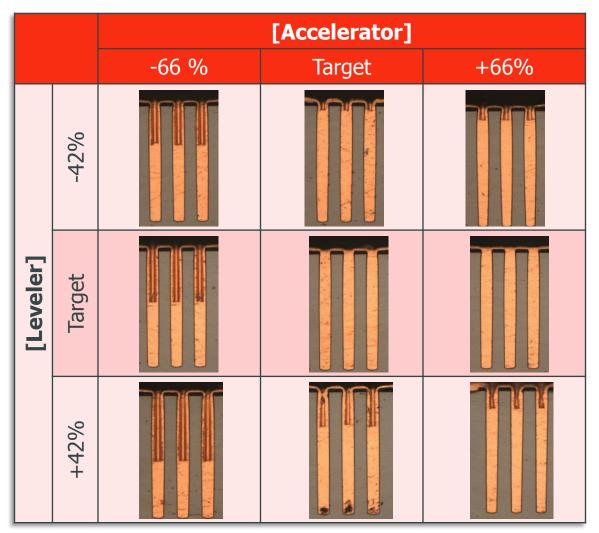
Membrane segment plater, 700 mL catholyte chamber, 1 L anolyte chamber



<sup>• 4</sup> step plating cycle

#### INTERLINK<sup>™</sup> 9200 Process Window and Stability 5x55 µm Test Wafer at Tool Level



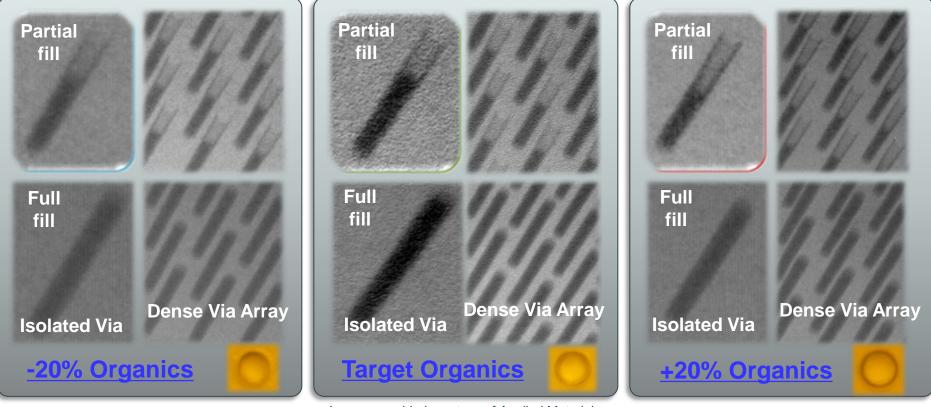

Images provided courtesy of Applied Materials

> INTERLINK<sup>™</sup> 9200 displays a wide additive and current density process window



## **INTERLINK™ 9200 Process Window and Stability**

#### 10x100 µm Test Wafer at Segment Level



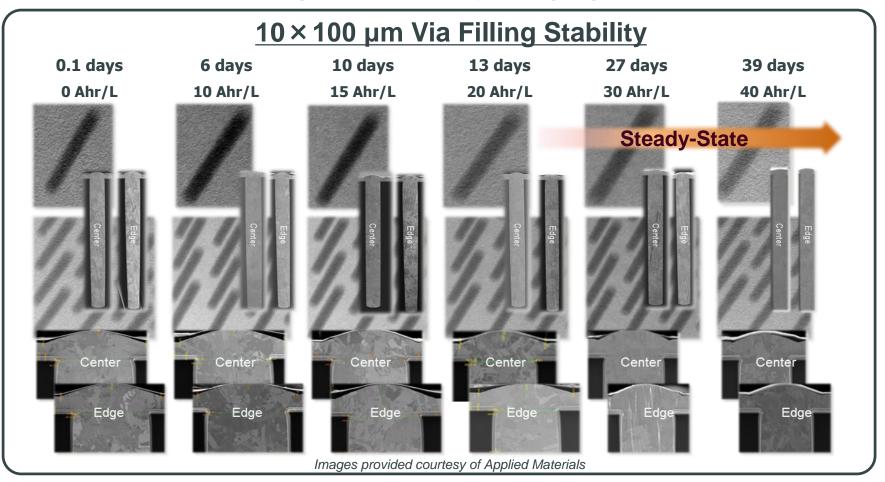

- Increased accelerator content within a leveler dosing increases fill rate
- Increased leveler content slows fill speeds and increases time for full fill
- Target dosings give rapid void-free filling of vias
- 4 step plating cycle 56 min. fill time

Membrane segment plater, 700 mL catholyte chamber, 1 L anolyte chamber



#### INTERLINK<sup>™</sup> 9200 Process Window and Stability 10x100 µm Test Wafer at Tool Level




Images provided courtesy of Applied Materials

> Void-free filling with a wide  $\pm 20\%$  organic dosing window

Similar fill speeds between via pitches across dosing window



### INTERLINK<sup>™</sup> 9200 Process Window and Stability *Fill Performance Throughout Electrolytic Aging*



> Greater than 40 Ahr L<sup>-1</sup> bath life with both  $10 \times 100 \mu m$  and  $5 \times 50 \mu m$  vias

Equivalent of ~10,000 5  $\times$  50 µm wafers or ~4,000 10  $\times$  100 µm wafers



### Conclusions

- INTERLINK<sup>™</sup> 9200 was developed to provide fast bottom-up fill of Cu into TSV features of 10x100 µm down to 5x50 µm and 2.5x50 µm
- Fill times of ~55 min for 10x100 µm features and ~16 min for 5x50 µm features achieved at the 300 mm tool level
- ➢ INTERLINK<sup>™</sup> 9200 has shown a wide process window of ±20% for both the additives and the plating rate
- ➢ INTERLINK<sup>™</sup> 9200 shows stable plating performance at the 300 mm tool level up to 40 Ahr/L





# Thank You

**Electronic Materials**